A memetic algorithm with adaptive hill climbing strategy for dynamic optimization problems

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A memetic algorithm with adaptive hill climbing strategy for dynamic optimization problems

Dynamic optimization problems challenge traditional evolutionary algorithms seriously since they, once converged, cannot adapt quickly to environmental changes. This paper investigates the application of memetic algorithms, a class of hybrid evolutionary algorithms, for dynamic optimization problems. An adaptive hill climbing method is proposed as the local search technique in the framework of ...

متن کامل

Memetic Algorithm for Dynamic Optimization Problems

Dynamic optimization problems has attracted much attention of researchers. However, due to complexity and uncertainty to solve dynamic optimization problems, it very difficult to find out the optimum solution that could be changed over time. Thus, it is necessary to develop efficient or improved an algorithms to solve dynamic optimization problems. A memetic algorithm that based on local search...

متن کامل

An Evolutionary Hill Climbing Algorithm for Dynamic Optimisation Problems

1 Introduction In contrast to stationary problems where the problem parameters are static, dynamic optimisation problems (DOPs) present a challenging research area to the community [1]. This is mainly because, changes can occur any time during the optimisation course. Hence, when such a change happens (for example a change in the fitness landscape), the previous local optimal solution is no lon...

متن کامل

Real-Coded Memetic Algorithms with Crossover Hill-Climbing

This paper presents a real-coded memetic algorithm that applies a crossover hill-climbing to solutions produced by the genetic operators. On the one hand, the memetic algorithm provides global search (reliability) by means of the promotion of high levels of population diversity. On the other, the crossover hill-climbing exploits the self-adaptive capacity of real-parameter crossover operators w...

متن کامل

Memetic Algorithms for Dynamic Optimization Problems

Dynamic optimization problems challenge traditional evolutionary algorithms seriously since they, once converged, cannot adapt quickly to environmental changes. This chapter investigates the application of memetic algorithms, a class of hybrid evolutionary algorithms, for dynamic optimization problems. An adaptive hill climbing method is proposed as the local search technique in the framework o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Soft Computing

سال: 2008

ISSN: 1432-7643,1433-7479

DOI: 10.1007/s00500-008-0347-3